Такое взаимодействие анализаторов является важным для развития восприятия множества в целом и образующих его элементов. Отсюда следует педагогический вывод о необходимости использовать при формировании у детей счетной деятельности и представления о множестве все анализаторы.
Между множествами, воспринимаемыми разными анализаторами, устанавливается взаимно-однозначное соответствие. Изучая и наблюдая действия детей с множествами, можно заметить у них большой интерес к множественности одинаковых предметов.
В дальнейшем появляется интерес к сравнению величин и множеств. Подобное поведение характеризует в основном детей третьего года жизни и может рассматриваться как второй этап в развитии счетной деятельности.
Тенденция к сравнению проявляется у детей различно. Например, малыши пытаются сравнить размеры полученных ими пряников и для этого прикладывают пряники друг к другу, но, конечно, еще неточно. В других случаях дети спорят между собой, кому из них подарили дома больший мяч: они широко разводят руками, чтобы показать его размер. Это первые, еще диффузные способы измерения и показа размеров предмета.
Дети внимательно следят за тем, чтобы все получили поровну орехов, конфет и т. д., когда каждому дают по нескольку штук. Они начинают сопоставлять каждую конфету одной группы с конфетою другой группы, определяя тем самым численности множеств.
Все эти факты свидетельствуют о стремлении детей путем сравнения определить численность той или иной совокупности или размер предметов — больше, меньше, поровну. Конечно, это еще первые попытки познать число путем сравнения, но зарождение их очевидно.
Эта тенденция возникает, с одной стороны, в силу подражания действиям взрослых, а главное — в силу того, что у детей давно уже сформировалось представление о неопределенной множественности, и на данном этапе начинает формироваться представление о конечном множестве как структурно-целостном единстве. Именно это позволяет детям поэлементно сравнивать одну группу конфет с другой, устанавливая между ними взаимно-однозначное соответствие: А, В, С, D, эквивалентно а, в, с, d.
На третьем этапе развития счетной деятельности при сопоставлении элементов сравниваемых множеств начинает включаться последовательное называние слов-числительных. Развитие этого этапа в значительной степени обусловлено обучением. При отсутствии такового или при неправильном обучении дети не усваивают приемы соотнесения числительных с объектами множеств (пропускают элементы множеств или, наоборот, соотносят одно числительное с несколькими объектами) и, как правило, не умеют обобщить все пересчитанное множество. На вопрос «сколько?» они вновь начинают пересчитывать множество и снова не обобщают общего количества, не отвечают на этот вопрос. Это часто встречается в тех случаях, когда взрослые спешат с обучением счету с помощью слов-числительных и не учат сравнивать поэлементно конкретные множества и на основе сравнения определять их равенство и неравенство, т. е. не обеспечивают достаточных упражнений с множествами в дочисловой период. Усвоив же в дочисловой период, что множества бывают равными и неравными, дети начинают проявлять интерес к счетной деятельности, именовать множества числами.
Таким образом, на протяжении всего дошкольного возраста необходимо работать с детьми над множествами. Особое внимание следует уделять формированию представлений о множестве как структурно-целостном единстве и в то же время учить видеть каждый отдельный элемент множества. При этом нет необходимости спешить обучать детей счету с помощью слов-числительных. Значительно важнее научить детей приемам поэлементного сравнения двух множеств, установления соответствия между их элементами.
Еще по теме:
Особенности, виды, причины и последствия игровой компьютерной зависимости
подростков
Впервые расстройство было описано в 1995 году доктором Айвеном Голдбергом. Несмотря на то, что в цели Голдберга не входило включение этого расстройства в официальные психиатрические стандарты, предложенное им описание базируется на описании расстройств, связанных со злоупотреблением психоактивными ...
Использование криптограмм для контроля знаний
При изучении темы «Кодирование информации» можно использовать криптограммы, так как шифрование, в частности составление криптограммы, является кодированием специального вида. Криптограммы появились в глубокой древности (по-гречески - тайнопись). Криптограммой (зашифровкой) называется род задач-голо ...
Классификация
учреждений дополнительного образования, их характеристика
Выделяют следующие виды учреждения дополнительного образования: Центр, школа дополнительного образования, Дворец (Дом), клуб, станция, детский парк и др. Дополнительное образование подразделяется на общее дополнительное образование и дополнительное профессиональное образование. В учреждениях общего ...