Понятие процента имеет широкое практическое применение, поэтому оно является обязательной частью школьной программы по математике. Школьники должны научится решать основные задачи на проценты, представлять их в виде десятичных и обыкновенных дробей.
Традиционно тема «Проценты» изучается в рамках младших классов среднего звена. Можно выделить несколько подходов к изучению данной темы.
Первый подход. Рассмотрение процентов ведется как отдельная тема, без опоры на дроби. Нахождение нескольких процентов от числа осуществляется в два действия. Изучение дробей ведется отдельной темой, гораздо позже задач на проценты. Таким образом, обучение идет от частного к общему, что менее эффективно и дает меньше возможностей для развития обучаемого.
Второй подход. Задачи на проценты осваиваются как частный случай задач на дроби и все приемы решения переносятся на них, то есть изучение идет от общего случая – задач на дроби, к частному. В большинстве современных учебников реализован второй подход.
Рассмотрим более подробно изучение данной темы в некоторых современных учебниках, рекомендованных Министерством Образования России на 2003/2004 учебный год для преподавания математики в основной школе.
По учебникам тема «Проценты» изучается в V классе. Перед введением понятия «процент» автор предлагает рассмотреть примеры:
«Сотую часть центнера называют килограммом, сотую часть метра – сантиметром, сотую часть гектара – акром. Принято называть сотую часть любой величины процентом».
Рассматриваются три основные задачи на проценты:
Задача вида К1.
Пример 1: Бригада рабочих за день отремонтировала 40% дороги, имеющей длину 120 м. Сколько метров дороги было отремонтировано бригадой за день?
Решение:
120 м составляет 100%
1) 120:100 =1,2 м составляет 1%.
2) м отремонтировано бригадой за день.
Ответ: За день бригада отремонтировала 48 м дороги.
Задача вида К2.
Пример 2: Ученик прочитал 72 страницы, что составляет 30% числа всех страниц книги. Сколько страниц в книге?
Решение:
Неизвестное число – 100%.
1) 72:30=2,4 страницы составляет 1%.
2) страниц составляет 100%.
Ответ: В книге 240 страниц.
Задача вида П1.
Пример 3: В классе из 40 учащихся 32 правильно решили задачу. Сколько процентов учащихся правильно решили задачу?
Решение:
40 учащихся составляют 100%.
1) 40:100=0,4 составляет 1%.
2) 32:0,4=80; 32 ученика составляют 80%.
Ответ: 80% учащихся правильно решили задачу.
Однако эти виды задач не выделяются, так как в качестве основного способа решения задач на проценты принят способ приведения к единице. Он обладает определенными преимуществами:
а) проще для выполнения вычислений;
б) приучает учащихся к выделению числа, принимаемого за 100%;
в) требует проведения в процессе решения конкретной задачи соответствующих рассуждений, которые не включают запоминания правил решения того или иного вида задач на проценты.
Учебник предполагает решать некоторые задачи на проценты с помощью уравнений. Эта рекомендация относится по существу к двум видам задач: нахождение числа по данному числу его процентов и нахождение процентного отношения двух чисел. Опыт преподавания математики в V классе показывает, что учащиеся сталкиваются с определенными трудностями в процессе решения задач на проценты, что связано в основном с недостаточной осознанностью учащимися способа приведения к единице. Поэтому отработка сущности этого способа в два действия имеет решающее значение в обучении решению задач на проценты, особенно на начальном этапе усвоения знаний. Задачи, рассмотренные в примерах 2 и 3, могут быть решены с помощью уравнений. В V классе решение задач с помощью уравнений вызывают у учащихся значительные трудности.
Еще по теме:
Типология обучающих игр и условия их использования
в процессе обучения английскому языку
Как уже было отмечено выше, ведущей деятельностью в младшем школьном возрасте является учебная деятельность. Полноценное ее формирование возможно при условии «прожития» предыдущего возрастного этапа с его ведущей деятельностью, в качестве которой выступает игра. Преемственность игры и учебной деяте ...
Психолого-педагогические условия, способствующие развитию творческих
способностей
Большинство теоретических исследований направлено на обоснование закономерностей формирования творческих способностей либо в специально организуемых учебных заведениях, либо средствами «творческих» специальностей – музыка, архитектура и т.п. Вместе с тем очень мало педагогических работ, в которых р ...
Модернизация общего среднего образования
Проблема модернизации отечественного образования была обозначена в августе 1999 г. на заседании Государственного Совета РФ. Начиная с 2000 г., на основе Закона РФ "Об образовании" от 1992 г. был принят ряд важнейших документов, по сути определяющих стратегию развития российского образован ...